close
 
 
 
(1) layer = imageInputLayer([28 28 1],Normalization="none")
 
輸入影像維度 28 * 28 * 1 灰階影像
 
 
 
(2) layer = convolution2dLayer(filterSize, numFilters)
 
 
(3)layer = batchNormalizationLayer() creates a batch normalization layer.

This type of layer normalizes each channel across a mini-batch.

This can be useful in reducing sensitivity to variations within the data.

 

(4) layer = reluLayer(Name="relu_1")

 

Rectified linear unit (ReLU) layer

 

(5) layer = additionLayer(numInputs)

creates an addition layer with the

number of inputs specified by numInputs. This layer takes multiple

inputs and adds them element-wise

 


(6) layer = fullyConnectedLayer(outputSize)

creates a fully connected layer.

outputSize specifies the size of the output for the layer.

fully connected layer will multiply the input by a matrix and then add

a bias vector.

 

(7) layer = softmaxLayer()

creates a softmax layer.

This layer is useful for classification problems.

 
 
 
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 me1237guy 的頭像
    me1237guy

    天天向上

    me1237guy 發表在 痞客邦 留言(0) 人氣()